Weighted and boundary l p estimates for solutions of the ∂ -equation on lineally convex domains of finite type and applications
Language
en
Article de revue
This item was published in
Mathematische Zeitschrift. 2018-10, vol. 290, n° 1-2, p. 195-220
Springer
English Abstract
We obtain sharp weighted estimates for solutions of the equation ∂ u = f in a lineally convex domain of finite type. Precisely we obtain estimates in the spaces L p (Ω,δ γ), δ being the distance to the boundary, with two ...Read more >
We obtain sharp weighted estimates for solutions of the equation ∂ u = f in a lineally convex domain of finite type. Precisely we obtain estimates in the spaces L p (Ω,δ γ), δ being the distance to the boundary, with two different types of hypothesis on the form f : first, if the data f belongs to L p Ω,δ γ Ω , γ > −1, we have a mixed gain on the index p and the exponent γ; secondly we obtain a similar estimate when the data f satisfies an apropriate anisotropic L p estimate with weight δ γ+1 Ω. Moreover we extend those results to γ = −1 and obtain L p (∂ Ω) and BMO(∂ Ω) estimates. These results allow us to extend the L p (Ω,δ γ)-regularity results for weighted Bergman projection obtained in [CDM14b] for convex domains to more general weights.Read less <
English Keywords
lineally convex
finite type
Bergman projection
Origin
Hal imported