Theoretical Analysis of Flows Estimating Eigenfunctions of One-homogeneous Functionals
PAPADAKIS, Nicolas
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
PAPADAKIS, Nicolas
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
SIAM Journal on Imaging Sciences. 2018, vol. 11, n° 2, p. 1416–1440
Society for Industrial and Applied Mathematics
Résumé en anglais
Nonlinear eigenfunctions, induced by subgradients of one-homogeneous functionals (such as the 1-Laplacian), have shown to be instrumental in segmentation, clustering and image decomposition. We present a class of flows for ...Lire la suite >
Nonlinear eigenfunctions, induced by subgradients of one-homogeneous functionals (such as the 1-Laplacian), have shown to be instrumental in segmentation, clustering and image decomposition. We present a class of flows for finding such eigenfunctions, generalizing a method recently suggested by Nossek and Gilboa. We analyze the flows on grids and graphs in the time-continuous and time-discrete settings. For a specific type of flow within this class, we prove convergence of the numerical iterations procedure and prove existence and uniqueness of the time-continuous case. Several toy examples are provided for illustrating the theoretical results, showing how such flows can be used on images and graphs.< Réduire
Projet Européen
Nonlocal Methods for Arbitrary Data Sources
Origine
Importé de halUnités de recherche