Kinetic-fluid derivation and mathematical analysis of cross-diffusion-Brinkman system
Idioma
en
Article de revue
Este ítem está publicado en
Mathematical Methods in the Applied Sciences. 2019
Wiley
Resumen en inglés
In this paper, we propose a new nonlinear model describing dynamical interaction of two species within viscous flow. The proposed model is a cross-diffusion system coupled with Brinkman problem written in terms of velocity ...Leer más >
In this paper, we propose a new nonlinear model describing dynamical interaction of two species within viscous flow. The proposed model is a cross-diffusion system coupled with Brinkman problem written in terms of velocity fluid, vorticity and pressure, and describing the flow patterns driven by an external source depending on the distribution of species. In the first part, we derive a macroscopic models from the kinetic-fluid equations by using the micro-macro decomposition method. Basing on Schauder fixed-point theory, we prove the existence of weak solutions for the derived model in the second part. The last part is devoted to develop a one dimensional finite volume approximation for the kinetic-fluid model, which are uniformly stable along the transition from kinetic to macroscopic regimes. Our computation method is validated with various numerical tests.< Leer menos
Palabras clave en inglés
Finite volume method
Asymptotic preserving scheme
Kinetic theory
Cross-diffusion
Brinkman flows
Orígen
Importado de HalCentros de investigación