Stochastically forced cardiac bidomain model
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BENDAHMANE, Mostafa
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Article de revue
Este ítem está publicado en
Stochastic Processes and their Applications. 2019, vol. 129, n° 12, p. 5312-5363
Elsevier
Fecha de defensa
2019Resumen en inglés
The bidomain system of degenerate reaction–diffusion equations is a well-established spatial model of electrical activity in cardiac tissue, with “reaction” linked to the cellular action potential and “diffusion” representing ...Leer más >
The bidomain system of degenerate reaction–diffusion equations is a well-established spatial model of electrical activity in cardiac tissue, with “reaction” linked to the cellular action potential and “diffusion” representing current flow between cells. The purpose of this paper is to introduce a “stochastically forced” version of the bidomain model that accounts for various random effects. We establish the existence of martingale (probabilistic weak) solutions to the stochastic bidomain model. The result is proved by means of an auxiliary nondegenerate system and the Faedo–Galerkin method. To prove convergence of the approximate solutions, we use the stochastic compactness method and Skorokhod–Jakubowski a.s. representations. Finally, via a pathwise uniqueness result, we conclude that the martingale solutions are pathwise (i.e., probabilistic strong) solutions.< Leer menos
Orígen
Importado de HalCentros de investigación