Extensions of Formal Hodge Structures
Language
en
Article de revue
This item was published in
Communications in Algebra. 2011, vol. 39, n° 4, p. 1372-1393
Taylor & Francis
English Abstract
We define and study the properties of the category ${\sf FHS}_n$ of formal Hodge structure of level $\le n$ following the ideas of L. Barbieri-Viale who discussed the case of level $\le 1$. As an application we describe ...Read more >
We define and study the properties of the category ${\sf FHS}_n$ of formal Hodge structure of level $\le n$ following the ideas of L. Barbieri-Viale who discussed the case of level $\le 1$. As an application we describe the generalized Albanese variety of Esnault, Srinivas and Viehweg via the group $\Ext^1$ in ${\sf FHS}_n$. This formula generalizes the classical one to the case of proper but non necessarily smooth complex varieties.Read less <
Origin
Hal imported