SHARP REACHABILITY RESULTS FOR THE HEAT EQUATION IN ONE SPACE DIMENSION
Langue
en
Document de travail - Pré-publication
Résumé en anglais
This paper gives a complete characterization of the reachable space for a system described by the 1D heat equation with L2 (with respect to time) Dirichlet boundary controls at both ends. More precisely, we prove that this ...Lire la suite >
This paper gives a complete characterization of the reachable space for a system described by the 1D heat equation with L2 (with respect to time) Dirichlet boundary controls at both ends. More precisely, we prove that this space coincides with the sum of two spaces of analytic functions (of Bergman type). These results are then applied to give a complete description of the reachable space via inputs which are n-times differentiable functions of time. Moreover, we establish a connection between the norm in the obtained sum of Bergman spaces and the cost of null controllability in small time. Finally we show that our methods yield new complex analytic results on the sums of Bergman spaces in infinite sectors.< Réduire
Origine
Importé de halUnités de recherche