Computing the Lambert W function in arbitrary-precision complex interval arithmetic
JOHANSSON, Fredrik
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
JOHANSSON, Fredrik
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Numerical Algorithms. 2020-01, vol. 83, n° 1, p. 221-242
Springer Verlag
Résumé en anglais
We describe an algorithm to evaluate all the complex branches of the Lambert W function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert ...Lire la suite >
We describe an algorithm to evaluate all the complex branches of the Lambert W function with rigorous error bounds in interval arithmetic, which has been implemented in the Arb library. The classic 1996 paper on the Lambert W function by Corless et al. provides a thorough but partly heuristic numerical analysis which needs to be complemented with some explicit inequalities and practical observations about managing precision and branch cuts.< Réduire
Origine
Importé de halUnités de recherche