Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes
Langue
en
Article de revue
Ce document a été publié dans
Asterisque. 2020, vol. 415, n° 415, p. 223--274
Société Mathématique de France
Résumé en anglais
We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly ...Lire la suite >
We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.< Réduire
Project ANR
Centre de Mathématiques Henri Lebesgue : fondements, interactions, applications et Formation - ANR-11-LABX-0020
Origine
Importé de halUnités de recherche