Analyticity of the Dirichlet-to-Neumann semigroup on continuous functions
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Evolution Equations. 2019-03, vol. 19, n° 1, p. 21-31
Springer Verlag
Resumen en inglés
Let Ω be a bounded open subset with C 1+κ-boundary for some κ > 0. Consider the Dirichlet-to-Neumann operator associated to the elliptic operator − ∂ l (c kl ∂ k) + V , where the c kl = c lk are Hölder continuous and V ∈ ...Leer más >
Let Ω be a bounded open subset with C 1+κ-boundary for some κ > 0. Consider the Dirichlet-to-Neumann operator associated to the elliptic operator − ∂ l (c kl ∂ k) + V , where the c kl = c lk are Hölder continuous and V ∈ L ∞ (Ω) are real valued. We prove that the Dirichlet-to-Neumann operator generates a C 0-semigroup on the space C(∂Ω) which is in addition holomorphic with angle π 2. We also show that the kernel of the semigroup has Poisson bounds on the complex right half-plane. As a consequence we obtain an optimal holomorphic functional calculus and maximal regularity on L p (Γ) for all p ∈ (1, ∞).< Leer menos
Palabras clave en inglés
C 0 -semigroup
Poisson bounds
holomorphic semigroup Home institutions:
AMS Subject Classification: 47D06
35K08 Keywords: Dirichlet-to-Neumann operator
Orígen
Importado de HalCentros de investigación