Gottschalk-Hedlund theorem revisited
Language
en
Document de travail - Pré-publication
English Abstract
Ergodic optimization and discrete weak KAM theory are two parallel theories with several results in common. For instance, the Mather set is the locus of orbits which minimize the ergodic averages of a given observable. In ...Read more >
Ergodic optimization and discrete weak KAM theory are two parallel theories with several results in common. For instance, the Mather set is the locus of orbits which minimize the ergodic averages of a given observable. In the favorable cases, the observable is cohomologous to its ergodic minimizing value on the Mather set, and the discrete weak KAM solution plays the role of the transfer function. One possibility of construction of such a coboundary is by using the non linear Lax-Oleinik operator. The other possibility is by using a discounted cohomological equation. It is known that the discounted discrete weak KAM solution converges to some selected weak KAM solution. We show that, in the ergodic optimization case for a coboundary observable over a minimal system, the discounted transfer function converges if and only if the observable is balanced.Read less <
English Keywords
Dynamical systems
Origin
Hal imported