Numerical boundary conditions in Finite Volume and Discontinuous Galerkin schemes for the simulation of rarefied flows along solid boundaries
MIEUSSENS, Luc
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Mathematics and Computers in Simulation. 2019-05, vol. 159, p. 136-153
Elsevier
Résumé en anglais
We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary ...Lire la suite >
We present a numerical comparison between two standard finite volume schemes and a discontinuous Galerkin method applied to the BGK equation of rarefied gas dynamics. We pay a particular attention to the numerical boundary conditions in order to preserve the rate of convergence of the method. Most of our analysis relies on a 1D problem (Couette flow), but we also present some results for a 2D aerodynamical flow.< Réduire
Mots clés en anglais
Discrete velocity model
BGK model
Finite Volume Schemes
Rarefied flow simulation
Transitional regime
Numerical boundary conditions
Discontinuous Galerkin schemes
Project ANR
Equipement d'excellence de calcul intensif de Mesocentres coordonnés - Tremplin vers le calcul petaflopique et l'exascale - ANR-10-EQPX-0029
Origine
Importé de halUnités de recherche