LOCAL EXISTENCE IN FREE INTERFACE PROBLEMS WITH UNDERLYING SECOND-ORDER STEFAN CONDITION
Language
en
Article de revue
This item was published in
Revue roumaine de mathématiques pures et appliquées. 2018, vol. 63, n° 4, p. 339-359
Editura Academiei Române
English Abstract
In this survey we consider free interface problems that do not fall within the class of Stefan problems, as there is no specific condition on the velocity of the interface. At least near some equilibrium, we are able to ...Read more >
In this survey we consider free interface problems that do not fall within the class of Stefan problems, as there is no specific condition on the velocity of the interface. At least near some equilibrium, we are able to associate the velocity to a combination of spatial derivatives up to the second order that we define as a second-order Stefan condition. Then, we may reformulate the system as a fully nonlinear problem, for which it holds local in time existence and uniqueness.Read less <
English Keywords
AMS 2010 Subject Classification: 35R35
35A01
35R37
80A22
80A25 Key words: Free interface problems
fully nonlinear problems
combustion
local in time existence and uniqueness
Origin
Hal imported