Afficher la notice abrégée

hal.structure.identifierINSTITUT FUER ANALYSIS
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHAAK, Bernhard H.
hal.structure.identifierClasse di Scienze
dc.contributor.authorHAASE, Markus
hal.structure.identifierINSTITUT FUER ANALYSIS
dc.contributor.authorKUNSTMANN, Peer Christian
dc.date.accessioned2024-04-04T02:53:02Z
dc.date.available2024-04-04T02:53:02Z
dc.date.issued2006
dc.identifier.issn1079-9389
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/192133
dc.description.abstractEnWe prove perturbation theorems for sectoriality and $R$--sectoriality in Banach spaces, which yield results on perturbation of generators of analytic semigroups and on perturbation of maximal $L^p$--regularity. For a given sectorial or $R$--sectorial operator $A$ in a Banach space $X$ we give conditions on intermediate spaces $Z$ and $W$ such that, for an operator $S: Z\to W$ of small norm, the perturbed operator $A+S$ is again sectorial or $R$--sectorial, respectively. These conditions are obtained by factorising the perturbation as $S= -BC$, where $B$ acts on an auxiliary Banach space $Y$ and $C$ maps into $Y$. Our results extend previous work on perturbations in the scale of fractional domain spaces associated with $A$ and allow for a greater flexibility in choosing intermediate spaces for the action of perturbation operators. At the end we illustrate our results with several examples, in particular with an application to a rough boundary value problem.
dc.language.isoen
dc.publisherKhayyam Publishing
dc.subject.enperturbation
dc.subject.ensectoriality
dc.subject.en$R$-sectoriality
dc.title.enPerturbation, Interpolation, and Maximal Regularity
dc.typeArticle de revue
bordeaux.journalAdvances in Differential Equations
bordeaux.page201-240
bordeaux.volume11
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00281623
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00281623v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Advances%20in%20Differential%20Equations&rft.date=2006&rft.volume=11&rft.issue=2&rft.spage=201-240&rft.epage=201-240&rft.eissn=1079-9389&rft.issn=1079-9389&rft.au=HAAK,%20Bernhard%20H.&HAASE,%20Markus&KUNSTMANN,%20Peer%20Christian&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée