En régulatrité maximale des equations d'order 2 dans l'espace de Hilbert.
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We consider the problem of maximal regularity for semilinear non-autonomous second order Cauchy problems u ′′ (t) + B(t)u ′ (t) + A(t)u(t) = F (t, u, u ′) t-a.e. u(0) = u 0 , u ′ (0) = u 1. (0.1) Here, the time ...Leer más >
We consider the problem of maximal regularity for semilinear non-autonomous second order Cauchy problems u ′′ (t) + B(t)u ′ (t) + A(t)u(t) = F (t, u, u ′) t-a.e. u(0) = u 0 , u ′ (0) = u 1. (0.1) Here, the time dependent operator A(t) is bounded from the Hilbert space V to its dual space V ′ and B(t) is associated with a sesquilinear form b(t, ·, ·) with domain V. We prove maximal L 2-regularity results and other regularity properties for the solutions of the above equation under minimal regularity assumptions on the operators and the inhomogeneous term F. One of our main results shows that maximal L 2-regularity holds if the operators are piecewise H 1 2 with respect to t. This regularity assumption is optimal and provides the best positive result on this problem.< Leer menos
Palabras clave en inglés
Damped wave equation
maximal regularity
non-autonomous evolution equations Mathematics Subject Classification (2010): 35K90
35K45
47D06
Orígen
Importado de HalCentros de investigación