Random interpolating sequences in Dirichlet spaces
Langue
en
Article de revue
Ce document a été publié dans
international mathematical research notices. 2022, vol. 17, p. 13629-13658
Résumé en anglais
We discuss random interpolation in weighted Dirichlet spaces $\mathcal{D}_\alpha$, $0\leq \alpha\leq 1$. While conditions for deterministic interpolation in these spaces depend on capacities which are very hard to estimate ...Lire la suite >
We discuss random interpolation in weighted Dirichlet spaces $\mathcal{D}_\alpha$, $0\leq \alpha\leq 1$. While conditions for deterministic interpolation in these spaces depend on capacities which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at $\alpha=1/2$ in the behavior of these random interpolatingsequences showing more precisely that almost sure interpolating sequences for $\mathcal{D}_\alpha$ are exactly the almost sure separated sequences when $0\le \alpha<1/2$ (which includes the Hardy space $H^2=\mathcal{D}_0$), and they are exactly the almost sure zero sequences for $\mathcal{D}_\alpha$ when $1/2 \leq \alpha\le 1$ (which includes the classical Dirichlet space $\mathcal{D}=\mathcal{D}_1$).< Réduire
Mots clés en anglais
random sequences
Carleson measure
Interpolating sequences
separation
Project ANR
Noyaux reproduisants en Analyse et au-delà - ANR-18-CE40-0035
Origine
Importé de halUnités de recherche