Deep correction of breathing-related artifacts in real-time MR-thermometry
DENIS DE SENNEVILLE, Baudouin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Leer más >
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
DENIS DE SENNEVILLE, Baudouin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Idioma
en
Article de revue
Este ítem está publicado en
Computerized Medical Imaging and Graphics. 2021-01p. 101834
Elsevier
Resumen en inglés
Real-time MR-imaging has been clinically adapted for monitoring thermal therapies since it can provide on-the- fly temperature maps simultaneously with anatomical information. However, proton resonance frequency based ...Leer más >
Real-time MR-imaging has been clinically adapted for monitoring thermal therapies since it can provide on-the- fly temperature maps simultaneously with anatomical information. However, proton resonance frequency based thermometry of moving targets remains challenging since temperature artifacts are induced by the respiratory as well as physiological motion. If left uncorrected, these artifacts lead to severe errors in temperature estimates and impair therapy guidance. In this study, we evaluated deep learning for on-line correction of motion related errors in abdominal MR- thermometry. For this, a convolutional neural network (CNN) was designed to learn the apparent temperature perturbation from images acquired during a preparative learning stage prior to hyperthermia. The input of the designed CNN is the most recent magnitude image and no surrogate of motion is needed. During the subsequent hyperthermia procedure, the recent magnitude image is used as an input for the CNN-model in order to generate an on-line correction for the current temperature map. The method’s artifact suppression performance was evaluated on 12 free breathing volunteers and was found robust and artifact-free in all examined cases. Furthermore, thermometric precision and accuracy was assessed for in vivo ablation using high intensity focused ultrasound. All calculations involved at the different stages of the proposed workflow were designed to be compatible with the clinical time constraints of a therapeutic procedure.< Leer menos
Palabras clave en inglés
Interventional procedures
MR-thermometry
Motion artifacts
Deep neural network
Real-time systems
Orígen
Importado de HalCentros de investigación