On the Circular Chromatic Number of Circular Partitionable Graphs
PÊCHER, Arnaud
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
PÊCHER, Arnaud
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
< Leer menos
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Idioma
en
Article de revue
Este ítem está publicado en
Journal of Graph Theory. 2006-08, vol. 52, p. 294--306
Wiley
Resumen en inglés
This paper studies the circular chromatic number of a class of circular partitionable graphs. We prove that an infinite family of circular partitionable graphs Ghas Xc (G) = X (G). A consequence of this result is that we ...Leer más >
This paper studies the circular chromatic number of a class of circular partitionable graphs. We prove that an infinite family of circular partitionable graphs Ghas Xc (G) = X (G). A consequence of this result is that we obtain an infinite family of graphs G with the rare property that the deletion of each vertex decreases its circular chromatic number by exactly 1< Leer menos
Orígen
Importado de HalCentros de investigación