Geomstats: A Python Package for Riemannian Geometry in Machine Learning
GUIGUI, Nicolas
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
LE BRIGANT, Alice
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Voir plus >
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
GUIGUI, Nicolas
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
LE BRIGANT, Alice
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
Statistique, Analyse et Modélisation Multidisciplinaire (SAmos-Marin Mersenne) [SAMM]
KOEP, Niklas
RWTH Aachen University = Rheinisch-Westfälische Technische Hochschule Aachen [RWTH Aachen]
RWTH Aachen University = Rheinisch-Westfälische Technische Hochschule Aachen [RWTH Aachen]
PENNEC, Xavier
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
< Réduire
Université Côte d'Azur [UniCA]
E-Patient : Images, données & mOdèles pour la médeciNe numériquE [EPIONE]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Machine Learning Research. 2020-12-20, vol. 21, n° 223, p. 1-9
Microtome Publishing
Résumé en anglais
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and ...Lire la suite >
We introduce Geomstats, an open-source Python toolbox for computations and statistics on nonlinear manifolds, such as hyperbolic spaces, spaces of symmetric positive definite matrices, Lie groups of transformations, and many more. We provide object-oriented and extensively unit-tested implementations. Among others, manifolds come equipped with families of Riemannian metrics, with associated exponential and logarithmic maps, geodesics and parallel transport. Statistics and learning algorithms provide methods for estimation, clustering and dimension reduction on manifolds. All associated operations are vectorized for batch computation and provide support for different execution backends, namely NumPy, PyTorch and TensorFlow, enabling GPU acceleration. This paper presents the package, compares it with related libraries and provides relevant code examples. We show that Geomstats provides reliable building blocks to foster research in differential geometry and statistics, and to democratize the use of Riemannian geometry in machine learning applications. The source code is freely available under the MIT license at http://geomstats.ai.< Réduire
Mots clés en anglais
differential geometry
Riemannian geometry
statistics
machine learning
manifold
Projet Européen
G-Statistics - Foundations of Geometric Statistics and Their Application in the Life Sciences
Project ANR
Idex UCA JEDI - ANR-15-IDEX-0001
3IA Côte d'Azur
3IA Côte d'Azur
Origine
Importé de halUnités de recherche