Computing Characteristic Polynomials of p-Curvatures in Average Polynomial Time
PAGÈS, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Symbolic Special Functions : Fast and Certified [SPECFUN]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Symbolic Special Functions : Fast and Certified [SPECFUN]
PAGÈS, Raphaël
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Symbolic Special Functions : Fast and Certified [SPECFUN]
< Réduire
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Symbolic Special Functions : Fast and Certified [SPECFUN]
Langue
en
Communication dans un congrès
Ce document a été publié dans
ISSAC 2021 - International Symposium on Symbolic and Algebraic Computation, 2021-07-18, Saint-Petersbourg / Virtual. 2021p. 329-336
ACM
Résumé en anglais
We design a fast algorithm that computes, for a given linear differential operator with coefficients in $Z[x ]$, all the characteristic polynomials of its p-curvatures, for all primes $p < N$ , in asymptotically quasi-linear ...Lire la suite >
We design a fast algorithm that computes, for a given linear differential operator with coefficients in $Z[x ]$, all the characteristic polynomials of its p-curvatures, for all primes $p < N$ , in asymptotically quasi-linear bit complexity in N. We discuss implementations and applications of our algorithm. We shall see in particular that the good performances of our algorithm are quickly visible.< Réduire
Mots clés en anglais
Matrix factorial
Complexity
p-curvature
Algorithms
complexity
-curvature
matrix factorial
Project ANR
Décider l'irrationalité et la transcendance - ANR-19-CE40-0018
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Origine
Importé de halUnités de recherche