Exact controllability of semilinear heat equations through a constructive approach
ERVEDOZA, Sylvain
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
LEMOINE, Jérôme
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Université Clermont Auvergne [UCA]
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Université Clermont Auvergne [UCA]
ERVEDOZA, Sylvain
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
LEMOINE, Jérôme
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Université Clermont Auvergne [UCA]
< Leer menos
Laboratoire de Mathématiques Blaise Pascal [LMBP]
Université Clermont Auvergne [UCA]
Idioma
en
Article de revue
Este ítem está publicado en
Evolution Equations and Control Theory. 2023-01-02, vol. 12, n° 2, p. 567-599
American Institute of Mathematical Sciences (AIMS)
Resumen en inglés
The exact distributed controllability of the semilinear heat equation ∂ty − ∆y + f (y) = v 1ω posed over multi-dimensional and bounded domains, assuming that f is locally Lipschitz continuous and satisfies the growth ...Leer más >
The exact distributed controllability of the semilinear heat equation ∂ty − ∆y + f (y) = v 1ω posed over multi-dimensional and bounded domains, assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup |r|→∞ |f (r)|/(|r| ln 3/2 |r|) β for some β small enough has been obtained by Fernández-Cara and Zuazua in 2000. The proof based on a non constructive fixed point arguments makes use of precise estimates of the observability constant for a linearized heat equation. Under the same assumption, by introducing a different fixed point application, we present a simpler proof of the exact controllability, which is not based on the cost of observability of the heat equation with respect to potentials. Then, assuming that f is locally Lipschitz continuous and satisfies the growth condition lim sup |r|→∞ |f (r)|/ ln 3/2 |r| β for some β small enough, we show that the above fixed point application is contracting yielding a constructive method to compute the controls for the semilinear equation. Numerical experiments illustrate the results.< Leer menos
Palabras clave en inglés
AMS Classifications: 35K58
93B05 Semilinear heat equation
Null controllability
Carleman estimates
Fixed point
Proyecto ANR
Nouvelles directions en contrôle et stabilisation: Contraintes et termes non-locaux - ANR-20-CE40-0009
Orígen
Importado de HalCentros de investigación