Herman’s Condition and Siegel Disks of Bi-Critical Polynomials
ROESCH, Pascale
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
ROESCH, Pascale
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
< Reduce
Institut de Mathématiques de Marseille [I2M]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Language
en
Article de revue
This item was published in
Communications in Mathematical Physics. 2016p. 1-30
Springer Verlag
English Abstract
We extend a theorem of Herman from the case of unicritical polynomials to the case of polynomials with two finite critical values. This theorem states that Siegel disks of such polynomials, under a diophantine condition ...Read more >
We extend a theorem of Herman from the case of unicritical polynomials to the case of polynomials with two finite critical values. This theorem states that Siegel disks of such polynomials, under a diophantine condition (called Herman's condition) on the rotation number, must have a critical point on their boundaries.Read less <
English Keywords
Diophantine condition
dynamical system
Herman’s condition
Siegel disk
rotation number
ANR Project
Espaces de paramètres en dynamique holomorphe. - ANR-13-BS01-0002
Origin
Hal imported