Rapid computation of special values of Dirichlet $L$-functions
JOHANSSON, Fredrik
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
JOHANSSON, Fredrik
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
< Leer menos
Lithe and fast algorithmic number theory [LFANT]
Analyse cryptographique et arithmétique [CANARI]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We consider computing the Riemann zeta function $\zeta(s)$ and Dirichlet $L$-functions $L(s,\chi)$ to $p$-bit accuracy for large $p$. Using the approximate functional equation together with asymptotically fast computation ...Leer más >
We consider computing the Riemann zeta function $\zeta(s)$ and Dirichlet $L$-functions $L(s,\chi)$ to $p$-bit accuracy for large $p$. Using the approximate functional equation together with asymptotically fast computation of the incomplete gamma function, we observe that $p^{3/2+o(1)}$ bit complexity can be achieved if $s$ is an algebraic number of fixed degree and with algebraic height bounded by $O(p)$. This is an improvement over the $p^{2+o(1)}$ complexity of previously published algorithms and yields, among other things, $p^{3/2+o(1)}$ complexity algorithms for Stieltjes constants and $n^{3/2+o(1)}$ complexity algorithms for computing the $n$th Bernoulli number or the $n$th Euler number exactly.< Leer menos
Proyecto ANR
Sûreté numérique pour les preuves assistées par ordinateur - ANR-20-CE48-0014
Orígen
Importado de HalCentros de investigación