Global descent obstructions for varieties
COUVEIGNES, Jean-Marc
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
COUVEIGNES, Jean-Marc
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
< Réduire
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
Langue
en
Article de revue
Ce document a été publié dans
Algebra & Number Theory. 2011, vol. 5, n° 4, p. 431-463
Mathematical Sciences Publishers
Résumé en anglais
We show how to transport descent obstructions from the category of covers to the category of varieties. We deduce examples of curves having $\QQ$ as field of moduli, that admit models over every completion of $\QQ$, but ...Lire la suite >
We show how to transport descent obstructions from the category of covers to the category of varieties. We deduce examples of curves having $\QQ$ as field of moduli, that admit models over every completion of $\QQ$, but have no model over $\QQ$.< Réduire
Origine
Importé de halUnités de recherche