Global descent obstructions for varieties
COUVEIGNES, Jean-Marc
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
COUVEIGNES, Jean-Marc
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
< Leer menos
Institut de Mathématiques de Toulouse UMR5219 [IMT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Université de Bordeaux [UB]
Centre National de la Recherche Scientifique [CNRS]
Idioma
en
Article de revue
Este ítem está publicado en
Algebra & Number Theory. 2011, vol. 5, n° 4, p. 431-463
Mathematical Sciences Publishers
Resumen en inglés
We show how to transport descent obstructions from the category of covers to the category of varieties. We deduce examples of curves having $\QQ$ as field of moduli, that admit models over every completion of $\QQ$, but ...Leer más >
We show how to transport descent obstructions from the category of covers to the category of varieties. We deduce examples of curves having $\QQ$ as field of moduli, that admit models over every completion of $\QQ$, but have no model over $\QQ$.< Leer menos
Orígen
Importado de HalCentros de investigación