The Cayley-Menger determinant is irreducible for n >= 3
D'ANDREA, Carlos
Department of Mathematics [Berkeley]
Departamento de Matemática [Buenos Aires]
Departament d'Algebra i Geometria
Department of Mathematics [Berkeley]
Departamento de Matemática [Buenos Aires]
Departament d'Algebra i Geometria
D'ANDREA, Carlos
Department of Mathematics [Berkeley]
Departamento de Matemática [Buenos Aires]
Departament d'Algebra i Geometria
< Reduce
Department of Mathematics [Berkeley]
Departamento de Matemática [Buenos Aires]
Departament d'Algebra i Geometria
Language
en
Article de revue
This item was published in
Siberian Mathematical Journal. 2005, vol. 46, p. 71-76
Springer Verlag, Russian Academy of Sciences, Siberian Branch
English Abstract
We prove that the Cayley-Menger determinant of an n-dimensional simplex is an absolutely irreducible polynomial for n ≥ 3. We also study the irre- ducibility of polynomials associated to related geometric constructions.
We prove that the Cayley-Menger determinant of an n-dimensional simplex is an absolutely irreducible polynomial for n ≥ 3. We also study the irre- ducibility of polynomials associated to related geometric constructions.Read less <
English Keywords
Volume of a simplex
Cayley-Menger determinant
irreducible polynomial
Origin
Hal imported