Sur l'infimum des parties réelles des zéros des sommes partielles de la fonction zêta de Riemann
Idioma
fr
Article de revue
Este ítem está publicado en
Comptes Rendus. Mathématique. 2009-04, vol. 347, p. p. 343-346
Académie des sciences (Paris)
Resumen en inglés
The greatest lower bound of the real parts of the roots of a partial sum of the Dirichlet series of Riemann's zeta function is asymptotically equivalent to the opposite of the number of terms of this sum, multiplied by the ...Leer más >
The greatest lower bound of the real parts of the roots of a partial sum of the Dirichlet series of Riemann's zeta function is asymptotically equivalent to the opposite of the number of terms of this sum, multiplied by the Napierian logarithm of 2, when this number of terms tends to infinity.< Leer menos
Orígen
Importado de HalCentros de investigación