Feasibility of Whole-Heart Electrophysiological Models With Near-Cellular Resolution
POTSE, Mark
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BARTHOU, Denis
STatic Optimizations, Runtime Methods [STORM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
See more >
STatic Optimizations, Runtime Methods [STORM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
POTSE, Mark
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
BARTHOU, Denis
STatic Optimizations, Runtime Methods [STORM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
STatic Optimizations, Runtime Methods [STORM]
Institut Polytechnique de Bordeaux [Bordeaux INP]
COUDIÈRE, Yves
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
< Reduce
Modélisation et calculs pour l'électrophysiologie cardiaque [CARMEN]
Institut de Mathématiques de Bordeaux [IMB]
IHU-LIRYC
Language
en
Communication dans un congrès
This item was published in
CinC 2020 - Computing in Cardiology, 2020-09-13, Rimini / Virtual. 2020-09-16
English Abstract
Given the opportunity to use a new cluster computer with over a quarter million compute cores we tested the strong and weak scaling of a monodomain reaction-diffusion model of the human ventricles with Ten Tusscher-Panfilov ...Read more >
Given the opportunity to use a new cluster computer with over a quarter million compute cores we tested the strong and weak scaling of a monodomain reaction-diffusion model of the human ventricles with Ten Tusscher-Panfilov dynamics. Element sizes down to 25 µm and a model size up to 11 billion nodes were tested with both explicit and implicit Euler integration methods. Time steps were 0.01 ms for the implicit method and were resolution-dependent for the explicit method. We found that the weak scaling (increasing model size) was good for both methods. Depending on the model size, strong scaling (speedup at a larger number of cores) was satisfactory for the explicit method, and more limited for the implicit method. The implicit solver was generally slower; only at a resolution of 25 µm and on a relatively small number of cores it was as fast as the explicit solver. We conclude that whole-heart simulations at 25 µm resolution are technically feasible, although not practical yet on currently available systems.Read less <
ANR Project
Simulation exascale de l'électrophysiologie cardiaque pour la recherche sur les arythmies - ANR-18-CE46-0010
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Plateforme multi-modale d'exploration en cardiologie - ANR-11-EQPX-0030
L'Institut de Rythmologie et modélisation Cardiaque - ANR-10-IAHU-0004
Plateforme multi-modale d'exploration en cardiologie - ANR-11-EQPX-0030
Origin
Hal imported