Bounded almost global solutions for non hamiltonian semi-linear Klein-Gordon equations with radial data on compact revolution hypersurfaces
SZEFTEL, Jérémie
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Institut de Mathématiques de Bordeaux [IMB]
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Institut de Mathématiques de Bordeaux [IMB]
SZEFTEL, Jérémie
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Laboratoire de Mathématiques Appliquées de Bordeaux [MAB]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Article de revue
This item was published in
Annales de l'Institut Fourier. 2006, vol. 56, p. 1419-1456
Association des Annales de l'Institut Fourier
English Abstract
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The ...Read more >
This paper is devoted to the proof of almost global existence results for Klein-Gordon equations on compact revolution hypersurfaces with non-Hamiltonian nonlinearities, when the data are smooth, small and radial. The method combines normal forms with the fact that the eigenvalues associated to radial eigenfunctions of the Laplacian on such manifolds are simple and satisfy convenient asymptotic expansions.Read less <
Origin
Hal imported