Deep Learning for the Automatic Quantification of Pleural Plaques in Asbestos-Exposed Subjects
BENLALA, Ilyes
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
DENIS DE SENNEVILLE, Baudouin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
DOURNES, Gael
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Leer más >
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
BENLALA, Ilyes
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
DENIS DE SENNEVILLE, Baudouin
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation Mathématique pour l'Oncologie [MONC]
DOURNES, Gael
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
BROCHARD, Patrick
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Université de Bordeaux [UB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Université de Bordeaux [UB]
ANDUJAR, Pascal
Institut Mondor de Recherche Biomédicale [IMRB]
Centre Hospitalier Intercommunal de Créteil [CHIC]
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
Institut Mondor de Recherche Biomédicale [IMRB]
Centre Hospitalier Intercommunal de Créteil [CHIC]
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
CHAMMINGS, Soizick
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
PARIS, Christophe
Centre Hospitalier Universitaire de Rennes [CHU Rennes] = Rennes University Hospital [Pontchaillou]
Institut de recherche en santé, environnement et travail [Irset]
Centre Hospitalier Universitaire de Rennes [CHU Rennes] = Rennes University Hospital [Pontchaillou]
Institut de recherche en santé, environnement et travail [Irset]
FERRETTI, Gilbert
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) [IAB]
Centre Hospitalier Universitaire [CHU Grenoble] [CHUGA]
Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) [IAB]
Centre Hospitalier Universitaire [CHU Grenoble] [CHUGA]
PAIRON, Jean-Claude
Institut Mondor de Recherche Biomédicale [IMRB]
Centre Hospitalier Intercommunal de Créteil [CHIC]
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
Institut Mondor de Recherche Biomédicale [IMRB]
Centre Hospitalier Intercommunal de Créteil [CHIC]
Institut Interuniversitaire de Médecine du Travail de Paris Ile-de-France [IIMTPIF]
LAURENT, Francois
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
< Leer menos
Centre de recherche Cardio-Thoracique de Bordeaux [Bordeaux] [CRCTB]
Centre Hospitalier Universitaire de Bordeaux [CHU Bordeaux]
Idioma
en
Article de revue
Este ítem está publicado en
International Journal of Environmental Research and Public Health. 2022-01, vol. 19, n° 3, p. 1417
MDPI
Resumen en inglés
OBJECTIVE: This study aimed to develop and validate an automated artificial intelligence (AI)-driven quantification of pleural plaques in a population of retired workers previously occupationally exposed to asbestos. ...Leer más >
OBJECTIVE: This study aimed to develop and validate an automated artificial intelligence (AI)-driven quantification of pleural plaques in a population of retired workers previously occupationally exposed to asbestos. METHODS: CT scans of former workers previously occupationally exposed to asbestos who participated in the multicenter APEXS (Asbestos PostExposure Survey) study were collected retrospectively between 2010 and 2017 during the second and the third rounds of the survey. A hundred and forty-one participants with pleural plaques identified by expert radiologists at the 2nd and the 3rd CT screenings were included. Maximum Intensity Projection (MIP) with 5 mm thickness was used to reduce the number of CT slices for manual delineation. A Deep Learning AI algorithm using 2D-convolutional neural networks was trained with 8280 images from 138 CT scans of 69 participants for the semantic labeling of Pleural Plaques (PP). In all, 2160 CT images from 36 CT scans of 18 participants were used for AI testing versus ground-truth labels (GT). The clinical validity of the method was evaluated longitudinally in 54 participants with pleural plaques. RESULTS: The concordance correlation coefficient (CCC) between AI-driven and GT was almost perfect (>0.98) for the volume extent of both PP and calcified PP. The 2D pixel similarity overlap of AI versus GT was good (DICE = 0.63) for PP, whether they were calcified or not, and very good (DICE = 0.82) for calcified PP. A longitudinal comparison of the volumetric extent of PP showed a significant increase in PP volumes (p < 0.001) between the 2nd and the 3rd CT screenings with an average delay of 5 years. CONCLUSIONS: AI allows a fully automated volumetric quantification of pleural plaques showing volumetric progression of PP over a five-year period. The reproducible PP volume evaluation may enable further investigations for the comprehension of the unclear relationships between pleural plaques and both respiratory function and occurrence of thoracic malignancy.< Leer menos
Palabras clave en inglés
Artificial intelligence
Pleural plaques
Asbestos exposure
Orígen
Importado de HalCentros de investigación