GLOBAL WEIERSTRASS EQUATIONS OF HYPERELLIPTIC CURVES
Idioma
en
Article de revue
Este ítem está publicado en
Transactions of the American Mathematical Society. 2022
American Mathematical Society
Fecha de defensa
2022Resumen en inglés
Given a hyperelliptic curve C of genus g over a number field K and a Weierstrass model {\mathsrc C} of C over the ring of integers O_K (i.e. the hyperelliptic involution of C extends to {\mathsrc C} and the quotient is a ...Leer más >
Given a hyperelliptic curve C of genus g over a number field K and a Weierstrass model {\mathsrc C} of C over the ring of integers O_K (i.e. the hyperelliptic involution of C extends to {\mathsrc C} and the quotient is a smooth model of P1_K over OK), we give necessary and sometimes sufficient conditions for {\mathsrc C} to be defined by a global Weierstrass equation. In particular, if C has everywhere good reduction, we prove that it is defined by a global Weierstrass equation with invertible discriminant if the class number hK is prime to 2(2g+1), confirming a conjecture of M. Sadek.< Leer menos
Orígen
Importado de HalCentros de investigación