Fast off-the-grid sparse recovery with over-parametrized projected gradient descent
Idioma
en
Communication dans un congrès
Este ítem está publicado en
2022 30th European Signal Processing Conference (EUSIPCO), 2022, Belgrade (Serbia).
Resumen en inglés
We consider the problem of recovering off-the-grid spikes from Fourier measurements. Successful methods such as sliding Frank-Wolfe and continuous orthogonal matching pursuit (OMP) iteratively add spikes to the solution ...Leer más >
We consider the problem of recovering off-the-grid spikes from Fourier measurements. Successful methods such as sliding Frank-Wolfe and continuous orthogonal matching pursuit (OMP) iteratively add spikes to the solution then perform a costly (when the number of spikes is large) descent on all parameters at each iteration. In 2D, it was shown that performing a projected gradient descent (PGD) from a gridded over-parametrized initialization was faster than continuous orthogonal matching pursuit. In this paper, we propose an off-the-grid over-parametrized initialization of the PGD based on OMP that permits to fully avoid grids and gives faster results in 3D.< Leer menos
Palabras clave en inglés
spike super-resolution
non-convex optimization
over-parametrization
projected gradient descent
continuous orthogonal matching pursuit
Proyecto ANR
Régularisation performante de problèmes inverses en grande dimension pour le traitement de données - ANR-20-CE40-0001
Orígen
Importado de HalCentros de investigación