SPANS OF TRANSLATES IN WEIGHTED $\ell^p$ SPACES
Idioma
en
Article de revue
Este ítem está publicado en
Revista Matemática Iberoamericana. 2023-01-17
European Mathematical Society
Fecha de defensa
2023-01-17Resumen en inglés
We study the cyclic vectors and the spanning set of the circle for the $\ell^p_\beta β(\mathbb{Z}$ spaces of all sequences $u =(u_ n)_{n\in \mathbb{Z}}$ such that $(u_n (1 + |n|)^\beta)_{ n\in \mathbb{Z}}\in \ell^p ...Leer más >
We study the cyclic vectors and the spanning set of the circle for the $\ell^p_\beta β(\mathbb{Z}$ spaces of all sequences $u =(u_ n)_{n\in \mathbb{Z}}$ such that $(u_n (1 + |n|)^\beta)_{ n\in \mathbb{Z}}\in \ell^p (\mathbb{Z}$ with $p > 1$ and $\beta>0$. By duality the spanning set is the uniqueness set of the distribution on the circle whose Fourier coefficients are in $\ell^{q}_{−\beta} (\mathbb{Z}$) where $q$ is the conjugate of $p$. Our characterizations are given in terms of the Hausdorff dimension and capacity.< Leer menos
Palabras clave en inglés
2000 Mathematics Subject Classification. primary 43A15
secondary 28A12
42A38 Cyclicity
Weighted p spaces
Spanning set
Uniqueness set
Hausdorff dimension
Capacity
Orígen
Importado de HalCentros de investigación