Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
hal.structure.identifierLaboratoire de Modélisation et Calcul [LMC - IMAG]
hal.structure.identifierInstitut CNRS-PAULI [ICP]
dc.contributor.authorMILISIC, Vuk
dc.date.accessioned2024-04-04T02:37:34Z
dc.date.available2024-04-04T02:37:34Z
dc.date.issued2004-06
dc.identifier.issn0029-599X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190807
dc.description.abstractEnWe design numerical schemes for systems of conservation laws with boundary conditions. These schemes are based on relaxation approximations taking the form of discrete BGK models with kinetic boundary conditions. The resulting schemes are Riemann solver free and easily extendable to higher order in time or in space. For scalar equations convergence is proved. We show numerical examples, including solutions of Euler equations.
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enBoundary Condition
dc.subject.enEuler Equation
dc.subject.enNumerical Scheme
dc.subject.enScalar Equation
dc.subject.enKinetic Boundary
dc.title.enKinetic approximation of a boundary value problem for conservation laws
dc.typeArticle de revue
dc.identifier.doi10.1007/s00211-003-0514-5
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalNumerische Mathematik
bordeaux.page595-633
bordeaux.volume97
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue4
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00387860
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00387860v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Numerische%20Mathematik&rft.date=2004-06&rft.volume=97&rft.issue=4&rft.spage=595-633&rft.epage=595-633&rft.eissn=0029-599X&rft.issn=0029-599X&rft.au=AREGBA-DRIOLLET,%20Denise&MILISIC,%20Vuk&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée