Numerical method for optimal stopping of piecewise deterministic Markov Processes
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DE SAPORTA, Benoîte
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Groupe de Recherche en Economie Théorique et Appliquée [GREThA]
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
DUFOUR, François
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Quality control and dynamic reliability [CQFD]
Language
en
Communication dans un congrès
This item was published in
Cinquième Rencontre de Statistiques Mathématiques BORDEAUX-SANTANDER-TOULOUSE-VALLADOLID, 2009-06, Le Teich.
English Abstract
In this talk, the optimal stopping problem of piecewise-deterministic Markov processes is studied. Such processes consist of a mixture of deterministic motion and random jumps. An approximation of the value function and a ...Read more >
In this talk, the optimal stopping problem of piecewise-deterministic Markov processes is studied. Such processes consist of a mixture of deterministic motion and random jumps. An approximation of the value function and a construction of ε-optimal stopping times will be presented. Convergence of the approximation schemes will be shown and convergence rates will be derived.Read less <
Origin
Hal imported