On Polynomial Ideals And Overconvergence In Tate Algebras
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
CARUSO, Xavier
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Communication dans un congrès
This item was published in
International Symposium On Symbolic And Algebraic Computation, 2022-07-04, Lille.
ACM
English Abstract
In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output ...Read more >
In this paper, we study ideals spanned by polynomials or overconvergent series in a Tate algebra. With state-of-the-art algorithms for computing Tate Gröbner bases, even if the input is polynomials, the size of the output grows with the required precision, both in terms of the size of the coefficients and the size of the support of the series. We prove that ideals which are spanned by polynomials admit a Tate Gröbner basis made of polynomials, and we propose an algorithm, leveraging Mora's weak normal form algorithm, for computing it. As a result, the size of the output of this algorithm grows linearly with the precision. Following the same ideas, we propose an algorithm which computes an overconvergent basis for an ideal spanned by overconvergent series. Finally, we prove the existence of a universal analytic Gröbner basis for polynomial ideals in Tate algebras, compatible with all convergence radii.Read less <
English Keywords
Algorithms
Gröbner bases
Tate algebra
Mora's algorithm
Universal Gröbner basis
ANR Project
Correspondance de Langlands p-adique : une approche constructive et algorithmique - ANR-18-CE40-0026
Origin
Hal imported