Volume forms on moduli spaces of d-differentials
Idioma
en
Article de revue
Este ítem está publicado en
Geometry and Topology. 2023
Mathematical Sciences Publishers
Fecha de defensa
2023Resumen en inglés
Given $d\in \mathbb{N}$, $g\in \mathbb{N} \cup\{0\}$, and an integral vector $\kappa=(k_1,\dots,k_n)$ such that $k_i>-d$ and $k_1+\dots+k_n=d(2g-2)$, let $\Omega^d\mathcal{M}_{g,n}(\kappa)$ denote the moduli space of ...Leer más >
Given $d\in \mathbb{N}$, $g\in \mathbb{N} \cup\{0\}$, and an integral vector $\kappa=(k_1,\dots,k_n)$ such that $k_i>-d$ and $k_1+\dots+k_n=d(2g-2)$, let $\Omega^d\mathcal{M}_{g,n}(\kappa)$ denote the moduli space of meromorphic $d$-differentials on Riemann surfaces of genus $g$ whose zeros and poles have orders prescribed by $\kappa$. We show that $\Omega^d\mathcal{M}_{g,n}(\kappa)$ carries a canonical volume form that is parallel with respect to its affine complex manifold structure, and that the total volume of $\mathbb{P}\Omega^d\mathcal{M}_{g,n}(\kappa)=\Omega^d\mathcal{M}_{g,n}/\mathbb{C}^*$ with respect to the measure induced by this volume form is finite.< Leer menos
Orígen
Importado de HalCentros de investigación