Explicit Runge-Kutta Residual Distribution schemes for Time Dependent Problems: second order case
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
RICCHIUTO, Mario
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
ABGRALL, Remi
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
< Leer menos
Parallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
Institut de Mathématiques de Bordeaux [IMB]
Idioma
en
Rapport
Este ítem está publicado en
2009
Resumen en inglés
In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. ...Leer más >
In this paper we construct spatially consistent second order explicit discretizations for time dependent hyperbolic problems, starting from a given Residual Distribution (RD) discrete approximation of the steady operator. We explore the properties of the RD mass matrices necessary to achieve consistency in space, and finally show how to make use of second order mass lumping to obtain second order explicit schemes. The discussion is particularly relevant for schemes of the residual distribution type which we will use for all our numerical experiments. However, similar ideas can be used in the context of residual based finite volume discretizations.< Leer menos
Orígen
Importado de HalCentros de investigación