Reductions from module lattices to free module lattices
PELLET-MARY, Alice
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
PELLET-MARY, Alice
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
< Leer menos
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Idioma
en
Document de travail - Pré-publication
Este ítem está publicado en
2023-06-06
Resumen en inglés
In this article, we give evidences that free modules (i.e., modules which admit a basis) are no weaker than arbitrary modules, when it comes to solving cryptographic algorithmic problems (and when the rank of the module ...Leer más >
In this article, we give evidences that free modules (i.e., modules which admit a basis) are no weaker than arbitrary modules, when it comes to solving cryptographic algorithmic problems (and when the rank of the module is at least 2). More precisely, we show that for three algorithmic problems used in cryptography, namely the shortest vector problem, the Hermite shortest vector problem and a variant of the closest vector problem, there is a reduction from solving the problem in any module of rank n ≥ 2 to solving the problem in any free module of the same rank n.< Leer menos
Proyecto ANR
Sécurité cryptographique des réseaux modules - ANR-21-CE94-0003
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Orígen
Importado de HalCentros de investigación