Reductions from module lattices to free module lattices
PELLET-MARY, Alice
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
PELLET-MARY, Alice
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
< Reduce
Institut de Mathématiques de Bordeaux [IMB]
Centre National de la Recherche Scientifique [CNRS]
Language
en
Document de travail - Pré-publication
This item was published in
2023-06-06
English Abstract
In this article, we give evidences that free modules (i.e., modules which admit a basis) are no weaker than arbitrary modules, when it comes to solving cryptographic algorithmic problems (and when the rank of the module ...Read more >
In this article, we give evidences that free modules (i.e., modules which admit a basis) are no weaker than arbitrary modules, when it comes to solving cryptographic algorithmic problems (and when the rank of the module is at least 2). More precisely, we show that for three algorithmic problems used in cryptography, namely the shortest vector problem, the Hermite shortest vector problem and a variant of the closest vector problem, there is a reduction from solving the problem in any module of rank n ≥ 2 to solving the problem in any free module of the same rank n.Read less <
ANR Project
Sécurité cryptographique des réseaux modules - ANR-21-CE94-0003
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Post-quantum padlock for web browser - ANR-22-PETQ-0008
Origin
Hal imported