Riesz transforms associated to Schrödinger operators with negative potentials
Langue
en
Autre document
Ce document a été publié dans
2009
Résumé en anglais
The goal of this paper is to study the Riesz transforms $\na A^{-1/2}$ where $A$ is the Schr\"{o}dinger operator $-\D-V,\ \ V\ge 0$, under different conditions on the potential $V$. We prove that if $V$ is strongly ...Lire la suite >
The goal of this paper is to study the Riesz transforms $\na A^{-1/2}$ where $A$ is the Schr\"{o}dinger operator $-\D-V,\ \ V\ge 0$, under different conditions on the potential $V$. We prove that if $V$ is strongly subcritical, $\na A^{-1/2}$ is bounded on $L^p(\R^N)$ , $N\ge3$, for all $p\in(p_0';2]$ where $p_0'$ is the dual exponent of $p_0$ where $2<\frac{2N}{N-2}< Réduire
Mots clés en anglais
Riemannian manifolds
Riesz transforms
Schrödinger operators
off-diagonal estimates
singular operators
Riemannian manifolds.
Origine
Importé de halUnités de recherche