Riesz transforms associated to Schrödinger operators with negative potentials
Idioma
en
Autre document
Este ítem está publicado en
2009
Resumen en inglés
The goal of this paper is to study the Riesz transforms $\na A^{-1/2}$ where $A$ is the Schr\"{o}dinger operator $-\D-V,\ \ V\ge 0$, under different conditions on the potential $V$. We prove that if $V$ is strongly ...Leer más >
The goal of this paper is to study the Riesz transforms $\na A^{-1/2}$ where $A$ is the Schr\"{o}dinger operator $-\D-V,\ \ V\ge 0$, under different conditions on the potential $V$. We prove that if $V$ is strongly subcritical, $\na A^{-1/2}$ is bounded on $L^p(\R^N)$ , $N\ge3$, for all $p\in(p_0';2]$ where $p_0'$ is the dual exponent of $p_0$ where $2<\frac{2N}{N-2}< Leer menos
Palabras clave en inglés
Riemannian manifolds
Riesz transforms
Schrödinger operators
off-diagonal estimates
singular operators
Riemannian manifolds.
Orígen
Importado de HalCentros de investigación