A Numerical Exploration of Compressed Sampling Recovery
Idioma
en
Article de revue
Este ítem está publicado en
Linear Algebra and its Applications. 2010-03, vol. 432, n° 7, p. 1663-1679
Elsevier
Resumen en inglés
This paper explores numerically the efficiency of L1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit ...Leer más >
This paper explores numerically the efficiency of L1 minimization for the recovery of sparse signals from compressed sampling measurements in the noiseless case. This numerical exploration is driven by a new greedy pursuit algorithm that computes sparse vectors that are difficult to recover by L1 minimization. The supports of these pathological vectors are also used to select sub-matrices that are ill-conditionned. This allows us to challenge theoretical identifiability criteria based on polytopes analysis and on restricted isometry conditions. We evaluate numerically the theoretical analysis without resorting to Monte-Carlo sampling, which tends to avoid worst case scenarios.< Leer menos
Palabras clave en inglés
polytopes
Compressed sensing
L1 minimization
restricted isometry constant
polytopes.
Orígen
Importado de HalCentros de investigación