An L(1/3) algorithm for ideal class group and regulator computation in certain number fields
BIASSE, Jean-François
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
BIASSE, Jean-François
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
< Réduire
Laboratoire d'informatique de l'École polytechnique [Palaiseau] [LIX]
Lithe and fast algorithmic number theory [LFANT]
Langue
en
Article de revue
Ce document a été publié dans
Mathematics of Computation. 2014, vol. 83, n° 288, p. 2005-2031
American Mathematical Society
Résumé en anglais
We analyse the complexity of the computation of the class group structure, regulator, and a system of fundamental units of a certain class of number fields. Our approach differs from Buchmann's, who proved a complexity ...Lire la suite >
We analyse the complexity of the computation of the class group structure, regulator, and a system of fundamental units of a certain class of number fields. Our approach differs from Buchmann's, who proved a complexity bound of L(1/2,O(1)) when the discriminant tends to infinity with fixed degree. We achieve a subexponential complexity in O(L(1/3,O(1))) when both the discriminant and the degree of the extension tend to infinity by using techniques due to Enge and Gaudry in the context of algebraic curves over finite fields.< Réduire
Origine
Importé de halUnités de recherche