General boundary conditions for a Boussinesq model with varying bathymetry
Idioma
en
Document de travail - Pré-publication
Este ítem está publicado en
2024-02-06
Resumen en inglés
This paper is devoted to the theoretical and numerical investigation of the initial boundary value problem for a system of equations used for the description of waves in coastal areas, namely, the Boussinesq-Abbott system ...Leer más >
This paper is devoted to the theoretical and numerical investigation of the initial boundary value problem for a system of equations used for the description of waves in coastal areas, namely, the Boussinesq-Abbott system in the presence of topography. We propose a procedure that allows one to handle very general linear or nonlinear boundary conditions. It consists in reducing the problem to a system of conservation laws with nonlocal fluxes and coupled to an ODE. This reformulation is used to propose two hybrid finite volumes/finite differences schemes of first and second order respectively. The possibility to use many kinds of boundary conditions is used to investigate numerically the asymptotic stability of the boundary conditions, which is an issue of practical relevance in coastal oceanography since asymptotically stable boundary conditions would allow one to reconstruct a wave field from the knowledge of the boundary data only, even if the initial data is not known.< Leer menos
Palabras clave en inglés
Boussinesq-Abbott model
Initial boundary value problem
Inhomogeneous boundary conditions
Dispersive boundary layer
Nonlocal flux
Finite volumes
Proyecto ANR
Parois, congestion et vorticité dans les fluides : des défis théoriques aux applications environnementales - ANR-23-CE40-0014
Orígen
Importado de HalCentros de investigación