A lagrangian scheme for the solution of the optimal mass transfer problem
IOLLO, Angelo
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
IOLLO, Angelo
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
< Reduce
Institut National de Recherche en Informatique et en Automatique [Inria]
Institut de Mathématiques de Bordeaux [IMB]
Modélisation, contrôle et calcul [MC2]
Language
en
Article de revue
This item was published in
Journal of Computational Physics. 2011-02-04, vol. 230, n° 9, p. 3430 - 3442
Elsevier
English Abstract
A lagrangian method to numerically solve the L 2 optimal mass transfer problem is presented. The initial and final density distributions are approximated by finite mass particles having a gaussian kernel. Mass conservation ...Read more >
A lagrangian method to numerically solve the L 2 optimal mass transfer problem is presented. The initial and final density distributions are approximated by finite mass particles having a gaussian kernel. Mass conservation and the Hamilton-Jacobi equation for the potential are identically satisfied by constant mass transport along straight lines. The scheme is described in the context of existing methods to solve the problem and a set of numerical examples including applications to medical imagery are presented.Read less <
English Keywords
Monge-Kantorovich problem
Optimal transport
Lagrangian methods
Origin
Hal imported