Higher-Order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements
DURUFLÉ, Marc
Propagation des Ondes : Étude Mathématique et Simulation [POEMS]
Institut de Mathématiques de Bordeaux [IMB]
Propagation des Ondes : Étude Mathématique et Simulation [POEMS]
Institut de Mathématiques de Bordeaux [IMB]
DURUFLÉ, Marc
Propagation des Ondes : Étude Mathématique et Simulation [POEMS]
Institut de Mathématiques de Bordeaux [IMB]
< Reduce
Propagation des Ondes : Étude Mathématique et Simulation [POEMS]
Institut de Mathématiques de Bordeaux [IMB]
Language
en
Article de revue
This item was published in
Journal of Scientific Computing. 2010-03, vol. 42, n° 3, p. 345--381
Springer Verlag
English Abstract
We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, ...Read more >
We provide a comprehensive study of arbitrarily high-order finite elements defined on pyramids. We propose a new family of high-order nodal pyramidal finite element which can be used in hybrid meshes which include hexahedra, tetrahedra, wedges and pyramids. Finite elements matrices can be evaluated through approximate integration, and we show that the order of convergence of the method is conserved. Numerical results demonstrate the efficiency of hybrid meshes compared to pure tetrahedral meshes or hexahedral meshes obtained by splitting tetrahedra into hexahedra.Read less <
English Keywords
pyramidal element
higher-order finite element
hybrid mesh
conformal mesh
continuous finite element
discontinuous Galerkin method
error estimates
quadrature formula
Origin
Hal imported