On the theta number of powers of cycle graphs
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Réduire
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Langue
en
Document de travail - Pré-publication
Résumé en anglais
We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect ...Lire la suite >
We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for this theta number.< Réduire
Mots clés en anglais
theta number
circular complete graph
circular perfect graph
Project ANR
/ - ANR-09-BLAN-0373
Origine
Importé de halUnités de recherche