On the theta number of powers of cycle graphs
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Leer menos
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Idioma
en
Document de travail - Pré-publication
Resumen en inglés
We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect ...Leer más >
We give a closed formula for Lovasz theta number of the powers of cycle graphs and of their complements, the circular complete graphs. As a consequence, we establish that the circular chromatic number of a circular perfect graph is computable in polynomial time. We also derive an asymptotic estimate for this theta number.< Leer menos
Palabras clave en inglés
theta number
circular complete graph
circular perfect graph
Proyecto ANR
/ - ANR-09-BLAN-0373
Orígen
Importado de HalCentros de investigación