Consecutive ones matrices for multi-dimensional orthogonal packing problems
JONCOUR, Cédric
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
JONCOUR, Cédric
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Institut de Mathématiques de Bordeaux [IMB]
PÊCHER, Arnaud
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
< Reduce
Reformulations based algorithms for Combinatorial Optimization [Realopt]
Laboratoire Bordelais de Recherche en Informatique [LaBRI]
Language
en
Article de revue
This item was published in
Journal of Mathematical Modelling and Algorithms. 2012, vol. 11, n° 1, p. 23-44
Springer Verlag
English Abstract
The multi-dimensional orthogonal packing problem (OPP) is a well studied decisional problem. Given a set of items with rectangular shapes, the problem is to decide whether there is a non-overlapping packing of these items ...Read more >
The multi-dimensional orthogonal packing problem (OPP) is a well studied decisional problem. Given a set of items with rectangular shapes, the problem is to decide whether there is a non-overlapping packing of these items in a rectangular bin. The rotation of items is not allowed. A powerful caracterization of packing configurations by means of interval graphs was recently introduced. In this paper, we propose a new algorithm using consecutive ones matrices as data structure. This new algorithm is then used to solve the two-dimensional orthogonal knapsack problem. Computational results are reported, which show its effectiveness.Read less <
Origin
Hal imported