Computing modular correspondences for abelian varieties
ROBERT, Damien
Curves, Algebra, Computer Arithmetic, and so On [CACAO]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Curves, Algebra, Computer Arithmetic, and so On [CACAO]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
ROBERT, Damien
Curves, Algebra, Computer Arithmetic, and so On [CACAO]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
< Réduire
Curves, Algebra, Computer Arithmetic, and so On [CACAO]
Lithe and fast algorithmic number theory [LFANT]
Institut de Mathématiques de Bordeaux [IMB]
Langue
en
Article de revue
Ce document a été publié dans
Journal of Algebra. 2011-10, vol. 343, n° 1, p. 248-277
Elsevier
Résumé en anglais
The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomials $\Phi_\ell(X,Y)$. If $j$ is the $j$-invariant associated to an elliptic curve $E_k$ over a field $k$ then the roots of ...Lire la suite >
The aim of this paper is to give a higher dimensional equivalent of the classical modular polynomials $\Phi_\ell(X,Y)$. If $j$ is the $j$-invariant associated to an elliptic curve $E_k$ over a field $k$ then the roots of $\Phi_\ell(j,X)$ correspond to the $j$-invariants of the curves which are $\ell$-isogeneous to $E_k$. Denote by $X_0(N)$ the modular curve which parametrizes the set of elliptic curves together with a $N$-torsion subgroup. It is possible to interpret $\Phi_\ell(X,Y)$ as an equation cutting out the image of a certain modular correspondence $X_0(\ell) \rightarrow X_0(1) \times X_0(1)$ in the product $X_0(1) \times X_0(1)$. Let $g$ be a positive integer and $\overn \in \N^g$. We are interested in the moduli space that we denote by $\Mn$ of abelian varieties of dimension $g$ over a field $k$ together with an ample symmetric line bundle $\pol$ and a symmetric theta structure of type $\overn$. If $\ell$ is a prime and let $\overl=(\ell, \ldots , \ell)$, there exists a modular correspondence $\Mln \rightarrow \Mn \times \Mn$. We give a system of algebraic equations defining the image of this modular correspondence. We describe an algorithm to solve this system of algebraic equations which is much more efficient than a general purpose Gr¨obner basis algorithm. As an application, we explain how this algorithm can be used to speed up the initialisation phase of a point counting algorithm.< Réduire
Project ANR
Courbes Hyperelliptiques : Isogénies et Comptage - ANR-09-BLAN-0020
Origine
Importé de halUnités de recherche